
Biomedical Aspect-based Summarization with
Personalized LLMs

Joe D. Menke
School of Information Sciences

University of Illinois at Urbana-Champaign
jmenke2@illinois.edu

Rahul Chappidi Venkata
School of Information Sciences

University of Illinois at Urbana-Champaign
rc46@illinois.edu

Abstract—Large language models (LLMs) can be used to
summarize lengthy articles into a more concise form, allowing
more efficient knowledge transfer. This is particularly valuable
in fields like biomedicine, where millions of articles are published
annually and yet clinicians and researchers are expected to keep
up to date. Personalized summarization adds another layer by
tailoring summaries to individual preferences or specific profes-
sional needs, which may further enhance knowledge transfer. In
this study, we create a dataset for aspect-based summarization
using four different author-generated summaries extracted from
biomedical review articles. Additionally, we evaluate various
models using a suite of automated metrics. Based primarily
on the SummaC factuality metric, the persona-based system
without reflection performed best on the abstract (SummaC =
0.61) and plain language summarization (SummaC = 0.64), while,
the baseline surprisingly appears to have performed the best for
the implications for research (SummaC = 0.75) and for practice
summaries (SummaC = 0.68). Future work aims to expand our
experiments and improve the quality of our evaluation through
additional metrics that incorporate the goal of each task as well
as through manual evaluation.

Index Terms—biomedicine, large language models, aspect-
based summarization, personalization

I. INTRODUCTION

Within natural language processing (NLP), the task of gen-
erating a concise version of documents while still preserving
key information is a common task, known as summarization.
One of most common variants of this task is known as Plain
Language Summarization (PLS), which attempts to simplify
text during the summarization process. PLS essentially sum-
marizes text personalized to someone without some particular
knowledge. While important on its own, PLS highlights the
fact that a single summary may not work for every person as
different users will need different levels of simplification or
focus depending on their background or goal. For example, a
biomedical researcher compiling a systematic review for ran-
domized controlled trials may pay significantly more attention
to aspects of the methods section relating to the rigor and re-
producibility of the study (i.e., any poor study designs leading
to biased results), whereas a clinician reading the same articles
may focus more on the results and implications. This thinking
aligns well with aspect-based summarization, a subtask of
summarization, which aims to generate multiple summaries for
a single document each considering different user perspectives.

Aspect-based summarization for biomedical research articles
has not been deeply explored to our knowledge.

The purpose of this work is to bridge this gap by incorporat-
ing user-specific perspectives into the summarization process
of biomedical research articles. Firstly, we create a dataset
that features summaries from four different perspectives for
biomedical review articles. Using a suite of evaluation metrics,
we develop a multi-agent summarization pipeline using large
language models (LLMs) in efforts to generate better outputs
with respect to different user groups and their various needs.
Ultimately, the goal of this work is to generate a more robust
framework for summarization as well as a benchmark dataset
on which future personalized summarization systems may be
evaluated for comparison within the biomedical domain.

II. RELATED WORKS

Prior work on summarization methods extensively explores
both extractive and abstractive approaches, with growing at-
tention toward hybrid models. Extractive summarization in-
volves selecting the most important sentences from the source
text based on statistical features, such as term frequency or
sentence centrality, which rank sentences for inclusion in the
summary. These methods, while computationally efficient and
capable of preserving the factuality of the original content,
often result in summaries that lack semantic cohesion and
narrative flow, as they simply concatenate extracted sentences
without generating new text. Graph-based methods such as
TextRank [1] or LexRank [2], often applied in extractive
summarization, employ sentence-similarity graphs but strug-
gle with semantic equivalency and the “dangling anaphora”
problem, which reduces coherence. Overall, these methods
may generate summaries that maintain high factuality with
reference to their source text, however, they are restrictive
in that they cannot be adapted based on the needs of the
user, e.g., in the case of PLS. Additionally, they are not
able to synthesize information, which may be needed to best
summarize a biomedical research article, as they simply extract
existing sentences.

In contrast, abstractive summarization aims to generate sum-
maries that are more coherent and resemble human-generated
texts. With the rise of deep learning, encoder-decoder architec-
tures such as transformer-based [3] models like BART [4] and
T5 [5] have enhanced the performance of abstractive methods



by enabling better contextual understanding of the source
text [6]. However, these generative models do present their
own technical challenges, particularly in maintaining factual
accuracy. For example, large language models sometimes
introduce knowledge not referenced within the source text at
all, usually referred to as hallucinations [7], [8]. They may
also oversimplify or subtly alter the meaning of text, which
can result in a loss of information. As such, it is important to
evaluate these models not just on metrics related to content
similarity and style, but also on factuality [9], [10].

More recently, research has started to apply these methods
within domain-specific variations of summarization, like in the
biomedical field. For example, Cohan et al. created a summa-
rization dataset where the reference summaries are research
abstracts and the source text is the full-text of the article [11].
As previously mentioned, a common variant of biomedical
summarization is PLS. One of the goals for PLS is to generate
lay summaries that simplify complex biomedical research
for non-expert readers, preserving technical accuracy while
enhancing accessibility. Abstractive summarization models can
be designed to produce summaries in plain language, often
focusing on readability metrics such as Flesch-Kincaid Grade
Level [12] and Dale-Chall Readability Score [13] to ensure
that the output is suitable for non-specialists. However, the
best metrics for PLS (and other summarization tasks) are still
a subject of debate with the most recent work recommending
a suite of metrics [14]. Tasks such as BioLaySumm [15]
emphasize the need for readability-controlled summarization,
where models are trained to generate both technical and lay
summaries from the same source text. These models usually
rely on fine-tuned transformer architectures like Longformer
Encoder-Decoder (LED) [16] and BioBART [17], with mod-
ifications to ensure the balance between factual accuracy and
ease of comprehension, although LLM methods were also
explored. This task demonstrates the importance of tailoring
models to meet audience-specific needs in order to address the
broader challenge of making information more accessible to
others.

General summarization and PLS are the primary summa-
rization tasks being explored within biomedicine right now.
However, biomedicine is read and used by individuals with
far more nuanced use cases. Limiting summarization to these
two tasks is limiting the utility of abstractive summarization
within this rich and diverse source of information. Researchers
come from a range of different fields and subfields that may or
may not be related to information in articles. Reducing their
information needs down to either expert or layperson is overly
simplistic. Guo et al. has recently started to explore this from
the perspective of summarizing text based on the knowledge
of individual researchers [18]. However, this personalization
largely works to mitigate the negative effects of researchers
reading outside of their specialized field, rather than person-
alizing based on different tasks.

Aspect-based summarization was initially proposed to better
summarize product reviews [19], [20]. However, its overall
goal of summarizing text with consideration of a user’s view

aligns well with summarizing biomedical research articles.
Recent work has been done to develop large-scale, aspect-
based summarization datasets using wikipedia [21], [22]. Most
recently, ACLSum, a multi-aspect summarization dataset fo-
cusing on scientific papers, was introduced [23]. This dataset
was developed using research articles published in ACL
venues and features 3 different summary types: challenges,
approaches, and outcomes. While valuable, this dataset largely
focuses on natural language processing, which can be quite
different than biomedicine (both in terms of content and reader
perspectives).

Here, this work attempts to focus on biomedical summa-
rization, specifically, by developing an aspect-based summa-
rization task that starts to consider the underlying reasons a
researcher may be reading a biomedical review article, for
example, a researcher within a different field expanding their
knowledge, or a clinician simply trying to stay up to date on
the best practices or treatments for a particular disease.

III. METHODS

The overall flow of the study is shown in Figure 1. The
diagram shows three phases of this project: (1) the extraction
of each summary from the full-text during the creation of this
dataset, (2) generating summaries using different methods, and
(3) evaluation of each generated summary. While we currently
use a suite of 10 evaluation metrics, we keep the question mark
to indicate that future work should still focus on how best to
evaluate these generated summaries.

Fig. 1. Flow diagram of the overall study, including use of 4 different
summary types (abstract, plain language summary, implications for research,
and implications for practice) as well as some of the different evaluation
metrics utilized.

A. Dataset

We identified and created our dataset, utilizing 4 article-
summary pairings from different perspectives: abstract sum-
mary (a researcher from the same field interested in deep-
level summary), layperson summary (a summary for a non-
researcher or a researcher from a different domain), implica-
tions for research summary (a researcher or stakeholder inter-
ested in high-level conclusions), and implications for practice
(a clinician interested in high-level conclusions applicable
to their practice). This dataset contains 302 review articles
published by the Cochrane Database of Systematic Reviews.
These articles all include summaries of the 4 different perspec-
tives included in this dataset and were downloaded through
the PubMed Central Open Archives Initiative (PMC-OAI) as
XML files. These XML files were then parsed to separate



the 4 summary types from the other article text. The extracted
summaries were removed from the source text used to initially
generate summaries as we did not want the model to simply
extract text but rather synthesize this information. This dataset
is split roughly into training (60%, n=194), validation (30%,
n=84), test (10%, n=25) splits for development of our system.
Test was split by year; any article published in 2024 was placed
into the test set as instances without any sort of data leakage
for a majority of evaluated LLM models (e.g., GPT-4 models
have a knowledge cut-off of October 2023). The remaining
articles were split randomly into training and validation sets.

To measure the lengths of the summaries as well as the rest
of text (i.e., full-text with summaries removed), we utilized
GPT-4o’s tokenizer. GPT-4o’s tokenizer was used as it is
readily available and is expected to be similar to tokenizers
used by many popular LLMs.

B. Models

The experimental framework for our model is shown in Fig-
ure 2. The methods we evaluate all use task-specific prompts
to generate summaries, which are then compared against task-
specific reference summaries for evaluation.

Fig. 2. The experimental framework for our experiments, which all utilize
4 different task-specific prompts (1 for each summary type). Generated sum-
maries are then compared against task-specific reference summaries extracted
previously from the full-text article.

The large language model used for testing in this work is
Llama-3.1-8B-Instruct. This was chosen as it is open-access
and freely available through HuggingFace. As previously al-
luded to in Figure ??, the input involves task-specific prompts
and input source text. These are fed into the model to generate
summaries. The generated summaries are then compared to
reference summaries using a suite of evaluation metrics. This
pipeline allows for a structured comparison between model
outputs and human-generated summaries, enabling assessment
of the model’s effectiveness in summarization tasks.

1) User-Persona Multi-Agent System: As currently im-
plemented, the user-persona based multi-agent summariza-
tion system features 4 agents: a persona-generation agent, a
persona-summarizer, a persona-critic, and a persona-editor. An
overview is shown in Figure 3. Current experiments represents
this framework at its most basic. Future work may extend this
to incorporate multiple reflection steps (i.e., iterating multiple
times between the persona-critic and the persona-editor) as
well as tooling (allow editors access to the original source
article). The input into the system is the same as our baseline
experiment: a description of the task as well as the textual
input to be summarized. These are used to generate a persona,
which is a description of someone who would read a research

article with that task in mind, for example, a physician. This
persona is used to initialize the summarization agent who
generates the task-specific summary. The generated summary
is then critiqued by the persona and then edited based on this
feedback. Finally, the edited summary is outputted as the final
result. As a sort of role-playing, this persona may generate
better summaries, especially those meant to best serve similar
users.

Fig. 3. An overview of our persona-based multi-agent framework. There are
4 agents: a persona-generation agent, a persona-summarizer, a persona-critic,
and a persona-editor.

Overall, we experimented with 3 system architectures. The
first serves as baseline and is simply the LLM with the task-
specific prompt and input text. The second experiment adds the
persona-generation step. This persona is then used to generate
the summary. Finally, for our third experiment, we added
reflection usng the critique and edit steps. In theory, future
works may repeat the reflection step dynamically (multiple
times or stopping based on input from another LLM).

IV. EVALUATION

Based on insights from prior work [14], we evaluate our
systems using a suite of metrics. For relevance, we utilize com-
mon summarization metrics including ROUGE-1, ROUGE-
2, ROUGE-L, and BERTScore [24]. These metrics measure
the overlap of word pieces, words, and phrases, which eval-
uate how relevant each summary is (i.e., does the generated
summary use similar words as the reference summary?). This
is similar to previous aspect-based summarization methods,
which primarily used ROUGE variants for evaluation [21],
[22]. For readability, we use SARI [25], Flesch-Kincaid Grade
Level [12] (FKGL), and Dale-Chall Readability Score [13]
(DCRS). For SARI, a higher score indicates that an article is
more readable, while for FKGL and DCRS, the score corre-
sponds to the grade-level, so lower scores are more readable.
In efforts to evaluate based on factuality, we also include
SummaC [9]. We tried to utilize AlignScore [10] as well, but



found difficulty in implementing it. While in an ideal world,
these factuality metrics would be most important (especially
within biomedicine), we feel we must note the caveat that
automated metrics regarding factuality are still not great [26],
[27]. For example, Fang, Dai, and Karimi demonstrate that
most common factuality metrics do not correlate well with
human evaluations [26]. Similarly, Ramprasad and Wallace
show that these metrics are sensitive to irrelevant text and
could potentially be gamed [27]. These metrics serve as our
evaluation, but future work should manually analyze generated
summaries.

V. RESULTS

A. Dataset

After removal of tables, the average token length of the rest-
of-text (i.e., the full-text article with summaries removed) was
18,157.62 ± 10,469.56 tokens, demonstrating that the articles
varied widely in length. The minimum token length was 4,245,
while the maximum was 107,641 tokens. The first quartile was
11,098 tokens; the median was 15,614.5 tokens; finally, the
third quartile was 22,297 tokens.

Regarding the summaries, the box plots for various token
lengths each are shown in Figure 4. As shown, the abstract
(1219.14 ± 323.33 tokens) and plain language summaries
(740.35 ± 235.20 tokens) were generally larger than the
other summaries - implications for practice (336.49 ± 364.07
tokens) and implications for research (394.81 ± 399.21 to-
kens), although these generally had longer tails. For example,
implications for research had a summary with a maximum
length of 3686 tokens. Intuitively, it makes sense that abstracts
and PLS have less outliers as they are generally highly
structured with specific instructions relating to length whereas
other summaries, especially implications-related ones (which
are entirely unrelated to the abstract) may be less defined.
The plain language summary is usually based on the abstract,
so it makes sense that it would be more uniform in length,
similar to the abstract. Additionally, the PLS’s shorter length
in comparison to the abstract makes sense as it represents a
simplified version of the abstract.

B. Models

The results from the baseline single-prompt summarization
generation using the Llama3.1-8B-Instruct model show varied
performance across different categories. Other models were
not tested due to various challenges outlined in the discussion
section of this paper. The model achieved relatively low BLEU
scores across all tasks, with the highest being 0.122 in Prac-
tical Implications, indicating limited overlap with reference
summaries in terms of exact phrasing (i.e., n-grams). However,
the model performed significantly better on the SARI metric,
averaging a score of 42.04, which suggests a moderate ability
to generate simplified or adjusted text that aligns with the
desired summary requirements. The BERTScore-F1, which
measures semantic similarity, averaged 0.8575, showing strong
alignment with reference meanings despite low surface-level
overlap. These results highlight the model’s effectiveness in

Fig. 4. Boxplots showing the various token lengths for each distinct summary
type. Blue represents the abstract. Orange represents the plain language
summary. Green represents the implications for practice summary. Pink
represents the implication for research summary.

producing semantically similar summaries, although it strug-
gles with generating exact matches to reference texts. This
performance may suggest that while the model captures essen-
tial ideas well, improvements may still be needed in order to
generate more precise, structured outputs. More comparisons
are needed though (e.g., summaries generated by randomly
selecting sentences from the rest of text) to better contextualize
these results.

VI. DISCUSSION

The creation of this dataset allows others to start developing
systems for biomedical aspect-based summarization. To our
knowledge, this dataset is the first of its kind, featuring
multiple aspects. Previous work focused on abstract [11] or
plain language summary generation [15], [28]. This dataset
alsoo opens the door to other aspects in biomedicine as well.
For example, a summary based on the rigor and reproducibility
of a study (e.g., does the study design bias the results in
someway?) would be helpful as it would ground the credibility
of a research article quickly for readers.

Regarding the LLM system(s) we used for summarization,
more work needs to be done. While we obtained initial results
on our test set, the experiments use a relatively small LLM
with only 8 billion parameters. Future work should expand
to analyze even larger models (e.g., 70B) and models from
other “families” (e.g., GPT-4, Gemini, etc.) to measure their
impact. Additionally, we could also alter numerous compo-
nents within the summarization system to potentially enhance
performance. The suite of metrics helps to raise the point that
automated evaluation metrics need to be better, especially if
we want to use this sort of summarization-based framework
within biomedicine. This is the case because it is not entirely
clear which experiment performed best. It depends on which
metric(s) are being used for evaluation. Manual evaluation
is obviously useful, but it is also slow and costly. To be of



TABLE I
PERFORMANCES ON THE TEST SET (N=25) ACROSS DIFFERENT SUMMARY TYPES AND EXPERIMENTS USING THE LLAMA3.1-8B-INSTRUCT MODEL.

BASE REFERS TO THE BASELINE EXPERIMENT WHERE AN LLM WAS ASKED TO GENERATE A TASK-SPECIFIC SUMMARY USING A MANUALLY
DEVELOPED PROMPT. PERSONA REFERS TO THE EXPERIMENT USING A PERSONALIZED LLM TO GENERATE THE SUMMARY. REFLECTION REFERS TO

THE EXPERIMENT WHERE A PERSONALIZED LLM GENERATES A SUMMARY, A CRITIQUE, AND A REVISED SUMMARY.

Experiment Metric Abstract
Plain Language Implications Implications

Summary for Research for Practice

Base

ROUGE-1 ↑ 0.03 0.05 0.04 0.04

ROUGE-2 ↑ 0.01 0.01 0.01 0.009

ROUGE-L ↑ 0.03 0.04 0.03 0.03

BERTScore-P ↑ 0.87 0.89 0.88 0.85

BERTScore-R ↑ 0.83 0.87 0.85 0.91

BERTScore-F1 ↑ 0.84 0.90 0.86 0.87

SummaC ↑ 0.56 0.61 0.75 0.68

SARI ↑ 40.6 40.0 37.5 37.6

Flesch-Kincaid Grade Level (FKGL) ↓ 14.4 11.5 14.2 14.3

Dale-Chall Readability Score (DCRS) ↓ 8.5 8.98 8.97 9.17

+ Persona

ROUGE-1 ↑ 0.03 0.04 0.04 0.03

ROUGE-2 ↑ 0.009 0.01 0.01 0.007

ROUGE-L ↑ 0.02 0.03 0.03 0.03

BERTScore-P ↑ 0.89 0.89 0.85 0.89

BERTScore-R ↑ 0.90 0.92 0.87 0.87

BERTScore-F1 ↑ 0.89 0.91 0.87 0.87

SummaC ↑ 0.61 0.64 0.66 0.65

SARI ↑ 40.2 40.1 37.6 37.7

Flesch-Kincaid Grade Level (FKGL) ↓ 14.7 10.2 13.7 14.3

Dale-Chall Readability Score (DCRS) ↓ 7.48 8.69 8.56 7.99

+ Reflection

ROUGE-1 ↑ 0.03 0.03 0.03 0.03

ROUGE-2 ↑ 0.01 0.007 0.009 0.006

ROUGE-L ↑ 0.02 0.02 0.03 0.02

BERTScore-P ↑ 0.89 0.89 0.85 0.86

BERTScore-R ↑ 0.90 0.91 0.87 0.89

BERTScore-F1 ↑ 0.89 0.90 0.86 0.92

SummaC ↑ 0.56 0.59 0.60 0.61

SARI ↑ 40.0 39.9 37.7 37.6

Flesch-Kincaid Grade Level (FKGL) ↓ 14.7 13.9 15.8 14.7

Dale-Chall Readability Score (DCRS) ↓ 8.03 8.38 8.26 7.99

use though, factuality and aspect-specific summarization need
metrics that better align with human intuition.

A. Limitations

There are a few limitations to this current work. While
plain language summaries are generally intended for laypeople
(i.e., people outside of academia), the PLS used in our work
more align with academics reading a paper outside of their
particular specialty rather than for laypeople. Also, we were
unable to test other models and architectures due to time
constraints. In terms of evaluation metrics, we use a variety of
automated metrics that are commonly used for summarization,
however, none of these metrics consider how well the summary

adheres to the task specifically. Future work should focus on
establishing metrics for individual tasks based on the particular
task. Unfortunately, there are no task-specific automated sum-
marization metrics currently. These will have to be developed
if we are to properly evaluate aspect-based summarization.
Finally, we currently only use automated metrics, which may
not perfectly align with judgments made by human evaluators
as previously mentioned [26]. Incorporating human evaluation
into our metrics would significantly enhance this work.

VII. CONCLUSION

Automated summarization utilizing large language mod-
els (LLMs) enables the extraction and synthesis of crucial



information from longer source documents, converting them
into brief summaries. This is especially beneficial in fields
such as biomedicine, where clinicians and researchers require
rapid access to key findings without needing to read entire
articles, which can be rather time consuming. Personalized
summarization further enhances this process by customizing
summaries to meet individual preferences or specific profes-
sional requirements. In this study, we utilize four distinct
author-generated summaries from biomedical review articles
to create a biomedical dataset for aspect-based summarization.
Moreover, we develop a baseline model with task-specific
prompts tailored to each summary type and evaluate these
using a comprehensive set of metrics. Overall, we find that
using personalization and reflection appear to improve the
factuality of the summaries, while maintaining similar, if not
better, relevance and readability metrics.

While promising, future work needs to perform more exten-
sive experimentation as well as expand the evaluation metrics.
Future experiments should be done analyzing the frameworks
on LLMs of different sizes (e.g., 70B+ parameter models), dif-
ferent LLMs (GPT-4, etc.), and modify/isolate changes to the
architecture (e.g., persona and reflection steps). Additionally,
the optimal evaluation metrics for this task remain uncertain.
Expanding our factuality metrics to include AlignScore [10]
may be a good start, but to most effectively align our evalua-
tion with humans, we need to manually evaluate summaries.

VIII. DATA AVAILABILITY

All data and code used in the generation and evaluation
of models are available at https://github.com/jomenke/Biomed-
Review-Summarization. This repository contains links to the
associated data, which are freely available through PMC-OAI,
as well as discussion of the parameters used in our initial
experiments.
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